Dr Mark Waters
- ARC Future Fellow, The University Of Western Australia
- group: Waters
Biography:
BA Biol Sci Oxford 2001 PhD Nottingham 2004 Post doc Langdale, Dept Plant Sci, Oxford 2004-2008 Post doc Smith, PEB 2010-2015
Research:
hormone signalling and plant development
Contact Info:
- hover or click to show email address
- https://watersmt.org
PEB Media Appearances:
Year | Publication | Online |
---|---|---|
2024
|
(2024)
Perception of butenolides by Bacillus subtilis via the α/β hydrolase RsbQ.
Curr Biol
34(3):623-631.e6.
|
|
2024
|
(2024)
Apocarotenoid signals in plant development and beyond.
J Exp Bot
75(4):1131-1133.
|
|
2024
|
(2024)
Karrikin signalling: impacts on plant development and abiotic stress tolerance.
J Exp Bot
75(4):1174-1186.
|
|
2024
|
(2024)
Branching out: Nitrogen-dependent modulation of strigolactone signaling.
Mol Plant
(in press).
|
|
2023
|
(2023)
Karrikin perception and signalling.
New Phytol
237(5):1525-1541.
|
|
2022
|
(2022)
A fungal tolerance trait and selective inhibitors proffer HMG-CoA reductase as a herbicide mode-of-action.
Nat Commun
13(1):5563.
|
|
2022
|
(2022)
KARRIKIN INSENSITIVE2 regulates leaf development, root system architecture and arbuscular-mycorrhizal symbiosis in Brachypodium distachyon.
Plant J
109(6):1559-1574.
|
|
2022
|
(2022)
KARRIKIN UP-REGULATED F-BOX 1 (KUF1) imposes negative feedback regulation of karrikin and KAI2 ligand metabolism in <i>Arabidopsis thaliana</i>.
Proc Natl Acad Sci U S A
119(11):e2112820119.
|
|
2021
|
(2021)
Desmethyl butenolides are optimal ligands for karrikin receptor proteins.
New Phytol
230(3):1003-1016.
|
|
2020
|
(2020)
Lotus japonicus karrikin receptors display divergent ligand-binding specificities and organ-dependent redundancy.
PLOS GENET
16(12):e1009249.
|
|
2018
|
(2018)
An allelic series at the KARRIKIN INSENSITIVE 2 locus of Arabidopsis thaliana decouples ligand hydrolysis and receptor degradation from downstream signalling.
Plant J
96(1):75-89.
|
|
2018
|
(2018)
Karrikin-KAI2 signalling provides Arabidopsis seeds with tolerance to abiotic stress and inhibits germination under conditions unfavourable to seedling establishment.
New Phytol
219(2):605-618.
|
|
2017
|
(2017)
Strigolactone Signaling and Evolution.
Annu Rev Plant Biol
68:291-322.
|
|
2017
|
(2017)
Assaying Germination and Seedling Responses of Arabidopsis to Karrikins.
Methods Mol Biol
1497:29-36.
|
|
2016
|
(2016)
Stereospecificity in strigolactone biosynthesis and perception.
Planta
243(6):1361-73.
|
|
2016
|
(2016)
LATERAL BRANCHING OXIDOREDUCTASE acts in the final stages of strigolactone biosynthesis in Arabidopsis.
Proc Natl Acad Sci U S A
113(22):6301-6.
|
|
2016
|
(2016)
Reporter Gene-Facilitated Detection of Compounds in <i>Arabidopsis</i> Leaf Extracts that Activate the Karrikin Signaling Pathway.
Front Plant Sci
7:1799.
|
|
2015
|
(2015)
A Selaginella moellendorffii Ortholog of KARRIKIN INSENSITIVE2 Functions in Arabidopsis Development but Cannot Mediate Responses to Karrikins or Strigolactones.
Plant Cell
27(7):1925-44.
|
|
2015
|
(2015)
Substrate-Induced Degradation of the α/β-Fold Hydrolase KARRIKIN INSENSITIVE2 Requires a Functional Catalytic Triad but Is Independent of MAX2.
Mol Plant
8(5):814-7.
|
|
2014
|
(2014)
The karrikin response system of Arabidopsis.
Plant J
79(4):623-31.
|
|
2014
|
(2014)
Strigolactone Hormones and Their Stereoisomers Signal through Two Related Receptor Proteins to Induce Different Physiological Responses in Arabidopsis.
Plant Physiol
165(3):1221-1232.
|
|
2013
|
(2013)
The structure of the karrikin-insensitive protein (KAI2) in Arabidopsis thaliana.
PLoS One
8(1):e54758.
|
|
2013
|
(2013)
KAI2- and MAX2-mediated responses to karrikins and strigolactones are largely independent of HY5 in Arabidopsis seedlings.
Mol Plant
6(1):63-75.
|
|
2013
|
(2013)
Karrikin and cyanohydrin smoke signals provide clues to new endogenous plant signaling compounds.
Mol Plant
6(1):29-37.
|
|
2013
|
(2013)
Carlactone-independent seedling morphogenesis in Arabidopsis.
Plant J
76(1):1-9.
|
|
2013
|
(2013)
The origins and mechanisms of karrikin signalling.
Curr Opin Plant Biol
16(5):667-73.
|
|
2012
|
(2012)
Karrikins force a rethink of strigolactone mode of action.
Plant Signal Behav
7(8):969-72.
|
|
2012
|
(2012)
Exploring the molecular mechanism of karrikins and strigolactones.
Bioorg Med Chem Lett
22(11):3743-6.
|
|
2012
|
(2012)
Solar irradiation of the seed germination stimulant karrikinolide produces two novel head-to-head cage dimers.
Org Biomol Chem
10(20):4069-73.
|
|
2012
|
(2012)
Strigolactones: destruction-dependent perception?
Curr Biol
22(21):R924-7.
|
|
2012
|
(2012)
The Arabidopsis ortholog of rice DWARF27 acts upstream of MAX1 in the control of plant development by strigolactones.
Plant Physiol
159(3):1073-85.
|
|
2012
|
(2012)
Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis.
Development
139(7):1285-95.
|
|
2011
|
(2011)
Smoke signals and seed dormancy: where next for MAX2?
Plant Signal Behav
6(9):1418-22.
|
|
2011
|
(2011)
F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana.
Proc Natl Acad Sci U S A
108(21):8897-902.
|
136